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Abstract: Old-growth forest provide a variety of services to human populations such as water, 5 

carbon storage and ecotourism. Despite the value of old-growth forests, this resource is 6 

constantly under anthropogenic pressure.  Old-growth management areas (OGMAs) are legal 7 

restrictions meant to retain old-growth forest attributes in managed landscapes. However, it is 8 

uncertain if this strategy has set aside forests with characteristics/attributes expected in old-9 

growth forests. While researchers have attempted to measure and evaluate different forest 10 

attributes and succession, the effectiveness of OGMAs in retaining old-growth forests in a 11 

managed landscape has rarely been tested. In this work, I applied LiDAR delivered metrics to 12 

estimate attributes of old-growth forests (ex. height, canopy cover, vertical complexity, 13 

understory density) and develop an index for old-growth forests. This index can aid in tracking 14 

the location and quality of old-growth forest in the landscape based on quantitative and 15 

transparent evaluation of forest structure, which solves the problems of multiple definitions of 16 

old-growth forest. Thus, using a scale from 0-1, where “0” indicates the area with the least 17 

presence of old-growth attributes and “1” the highest, I assessed the quality of existing OGMAs, 18 

and evaluated the potential for recruitment of other prospective OGMA’s location. This research 19 

brings light to OGMAs’ definition and their evaluation through the use of a relatively new 20 

technique, LiDAR. More importantly, the identification of the amount and location of old-21 

growth forests over the landscape can aid to the conservation of this rare resource and its 22 

services. 23 
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1. INTRODUCTION: 26 

Old-growth forest is a forest in advanced development stage, associated with specific 27 

structures, natural processes, and no significant anthropogenic interference (Mosseler et al. 28 

2003c, Spies 2004, Hilbert and Wiensczyk 2007). When a forest is allowed to reach older stages 29 
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of development, it attains attributes critical for the maintenance of biodiversity in the landscape 30 

(DellaSala et al. 1996, Spies 2004, Bauhus et al. 2009). Forests with these characteristics are 31 

valuable and rare resources in rapid decline in the world (Watson et al. 2016, 2018). In addition, 32 

the location and abundance of old-growth attributes enables the provision of a range of 33 

ecosystem services (ESs) that directly or indirectly beneficiate human populations (MA 2005, 34 

Isbell et al. 2011). Some of these services include ecotourism (FAO 2016), genetic variability 35 

(Mosseler et al. 2003b), carbon storage and sink (Luyssaert et al. 2008), water provision, 36 

indigenous culture and the maintenance of human health (Watson et al. 2018). Therefore, 37 

identifying and retaining old-growth forests can aid to their conservation and the maintenance of 38 

important ESs in the landscape.  39 

In Canada, old-growth forest retention in managed landscapes is promoted by the Old-40 

Growth Management Areas - OGMAs (Mosseler et al. 2003c, Environmental Law Centre 2013). 41 

Notwithstanding, the selection of OGMAs is a difficult task due to the lack of a common 42 

definition for what constitutes an old-growth forest (Hilbert and Wiensczyk 2007). Old-growth 43 

forest types vary in terms of longevity of dominant species, return period of natural disturbances, 44 

human intervention, shade tolerance, and abundance of specific structures such as  number of 45 

large trees, snags, accumulated woody debris (Mosseler et al. 2003c, Spies 2004, Bauhus et al. 46 

2009). For example, Douglas-fir forests may grow for centuries without disturbances, whereas 47 

ponderosa pine forest are often disturbed by fires (Spies 2004), posing an important 48 

methodological challenge on the characterization of these forests only based on disturbance 49 

frequency.  50 

Age is a common proxy that has long been used to define and locate old-growth forests. For 51 

example, according to MFLNRORD (2003), BC’s coastal forests are considered old-growth if 52 

trees are more than 250 years old. In the Interior, where the longevity of trees tends to be shorter 53 
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and disturbances more frequent, old-growth is defined as more than 120 years of age for forests 54 

dominated by lodgepole pine or broadleaf species. Although age is a useful proxy, its 55 

measurement with traditional field methods can be quite costly (Racine et al. 2014). In addition, 56 

important structural old-growth elements can be omitted using only an age threshold (Holt et al. 57 

2008). More importantly, forest cover maps currently used to locate old-growth forests does not 58 

correspond to the age class distribution in the landscape (Holt et al. 2008). This inaccuracy can 59 

lead to a management that underrepresents old-growth forest in the landscape. As a result, in 60 

many areas it may be prudent to move away from a simple age threshold for old-growth 61 

definition towards a more ecologically based representation of forest structures.  62 

 Different authors have pointed out the need to develop an index that could be used to 63 

track old-growth forest in the landscape, rather than only using stand age (Mosseler et al. 2003c, 64 

Hilbert and Wiensczyk 2007). Compared with old forests, young natural forests or intensively 65 

managed forest plantations have simpler structure (Spies 2004). Thus, the abundance of old-66 

growth attributes (e.g. large trees, snags, accumulated woody debris, etc.), which contributes to 67 

the structural complexity in old-growth forest, can be used as proxy for old-growth forest 68 

mapping (Mosseler et al. 2003c, 2003a, Bauhus et al. 2009). A myriad of work has been 69 

conducted using traditional field based measurement of forest attributes to classify forest 70 

succession and assess the quality of old-growth forests (Table 1). Even though field based 71 

methods are essential for most forest studies, they are less applicable for landscape scale 72 

evaluation. 73 

The rapid emergence of new technologies have allowed us to develop highly precise 74 

measures of forest condition across broad areas, which was never possible using traditional field 75 

based and areal interpretation methods (Cohen et al. 1995, Song and Woodcock 2002, Hyyppä et 76 

al. 2008, Kane et al. 2010b). Typical applications of passive and/or active optical sensors have 77 
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proven to be useful for a variety of ecological studies, enabling researchers to, for instance, 78 

identify forest succession in broad scales (Table 1). Nevertheless, remote sensed images are only 79 

two-dimensional (x and y), which cannot fully represent the nuances of the three-dimensional 80 

(3D) structures present in old-growth forests (Lefsky et al. 2002). On the other hand, airborne 81 

LiDAR has been proven to be an effective technique to estimate 3D forest attributes, particularly 82 

for height and biomass (Næsset and Økland 2002, Hyde et al. 2006). Starting with civil 83 

engineering applications (Meng et al. 2010), airborne LiDAR has been rapidly incorporated in 84 

forest management (Reutebuch et al. 2005, Wulder et al. 2008), wildlife habitat assessment 85 

(Hyde et al. 2006, Martinuzzi et al. 2009), evaluation the effect of pests (Bright et al. 2013), and 86 

other applications. In addition to height and biomass, a variety of other old-growth forest 87 

attributes can be accurately estimated with airborne LiDAR (table 2). Thus, airborne LiDAR 88 

may be an effective way of generating an old-growth index and effectively mapping old-growth 89 

forests.  90 

The definition and mapping of old-growth forests with measurable structural and biophysical 91 

features, considering the continuous nature of forest structure, is imperative for their 92 

conservation and maintenance in managed landscapes. Throughout the years, different authors 93 

have attempted to map forest succession in the landscape (table 1). However, very few have 94 

looked at the quality of the set aside old-growth forests or OGMAs, and none has done it in 95 

landscape scale. In this work, I aim to: (1) develop an old-growth index based on forest 96 

structures measured with traditional field methods; (2) extrapolate the old-growth index to the 97 

landscape utilizing ecological based old-growth attributes delivered from airborne LiDAR; and 98 

(3) evaluate the amount and quality of old-growth forest for the study site, simultaneously 99 

evaluating the OGMAs currently present in the landscape. 100 

 101 
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2. MATERIAL AND METHOD: 102 

2.1. Study Area: 103 
A community forest can be defined as “any forestry operation managed by a local 104 

government, community group, or First Nation for the benefit of the entire 105 

community”(MFLNRORD 2017a). The Chinook Community Forest (CCF), located within the 106 

Skeena region, overlaps with six First Nations’ and Bands’ territories: Cheslatta Carrier Nation; 107 

Lake Babine Nation; Burns Lake Band; Wet‘suwet‘en First Nation; Skin Tyee Nation; and Nee 108 

Tahi Buhn Band. The tenure area for CCF operations is approximately 123,679 ha, 109 

encompassing around 40 OGMAs (~7,431 ha). Further information about CCF can be found in 110 

the supplementary materials (S1). The overall commercial intent for the CCF is to produce and 111 

harvest fibers for sale. However, due to the nature of the partnership that created this community 112 

forest, not only timber but also other ESs such as cultural heritage, agriculture, recreation, and 113 

water quality receive also great importance in the management of the community. 114 
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 115 

Figure 3 OGMAs’ distribution in Chinook Community Forest tenure areas (unpublished L. 116 
Barros, UNBC, 2018). 117 

 118 

2.2. Data: 119 
Airborne LiDAR was collected in a leaf-on condition with minimum density of 2 120 

pulses/m2; half-scan angle of 12.5o from NADIR, with 50% overlap. Footprint is estimated to be 121 

from 30 to 70 cm. To process the LiDAR’s point cloud, I utilized the LAStools software (version 122 

161114). A complete scheme of the LiDAR process can be seen in Figure 5. To validate ALS 123 

data, permanent ground plots were designed to capture the variation observed from the airborne 124 

LiDAR cloud points. Ground measurement of forest features was collected from a minimum of 125 

110 plots of 10 m radius (Table 1). All trees down to 4 cm (at 1.30 m height) were measured to 126 

obtain better LiDAR metrics estimates for disturbed and/or young forests (Keränen et al. 2015). 127 

The inventory followed the Change Monitoring Inventory (CMI) procedures (MFLNRORD 128 

2017b). High precision GPS was used to obtain two measurements of ± 2m accuracy from the 129 
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plot center. Airborne LiDAR and ground survey were incorporated into geographic information 130 

system (GIS) exercises to map and evaluate old-growth forests.  131 

 132 

Table 1 List of forest attributes measured during the field work  133 

Data Collected Description 

Tree # :   

Species (2 Letter Code): e.g. Pl =Lodgepole Pine, At= Trembling Aspen, Sx= Hybrid 

Spruce 

Diameter: DBH (cm) 

Measured or Estimated 

Height: Tree Length (m) 

Measured or Estimated 

Loss Factor Information: Tree Class; Conk; Blind Conk; Scar; Fork/ Crook; Frost 

Crack; Mistletoe; Rotten Branch; Dead/ Br. Top; Root Rot 

Code; Insect Code; Fire Code; and Blowdown Code 

Sector (1-8):   

Live or Dead:   

Standing or Fallen:   

Crown Class (D, C, I, S): D= dominant, C= Codominant, I= Intermediate, S= 

Suppressed 

Height to Live Crown (m): 

Broken Trees: Broken Top Diameter (cm) 

Projected Height (m) 

Borderline Trees: Horizontal Distance (m) 

Bearing from Plot Center 

Site Tree Ages: Age at DBH Counted - Field 

Agea at DBH Counted - Office 

Reach Pith? Yes/No 

If Can't Reach Pith - Enter Core Length (mm) 

5 yr. Growth (mm) 

10 yr. Growth (mm) 

20 yr. Growth (mm) 

General Comments:   

# of small tree 

(DBH<4cm): 

Species code; Length class: 10-30cm, 31cm-1.3m, >1.3m 

Stumps >= 4cm DIB and 

length <1.3m: 

Species code, frequency, DIB(cm), length(m), and %Sound 

 134 



8 
 

2.3. Methods: 135 
For this work, I combined traditional field based measurement with airborne LiDAR to track 136 

and evaluate old-growth forest in the landscape. I obtained an old-growth index from empirical 137 

data collected for each of the permanent plots present in the landscape. K-mean clustering was 138 

applied to the empirical data to try to identify different clusters, which was here assigned as 139 

forest succession. Plots were then used as training dataset to build two random forest models 140 

with the LiDAR delivered metrics: a classification model and regression model. For a random 141 

forest regression method, I utilized the old-growth index from empirical data, and extrapolated it 142 

to the landscape using the same airborne LiDAR metrics, assigning an old-growth level from 0-1 143 

for each plot.  144 

 145 

2.3.1. Empirical data processing: 146 
 Forest structural attributes obtained from field measurement was used to obtain a forest 147 

succession classification and an old-growth index. K-means clustering statistics is powerful 148 

unsupervised classification method that identifies patterns for the available variables. These 149 

statistics were applied to old-growth attributes measured in a plot level. The attributes were, tree 150 

height, coefficient of variation, understory density (down wood, small trees, and samplings), 151 

number of snags and snag DAP classes, broken top trees, number of large trees, and other 152 

important old-growth attributes (Table 3). PCA was previously used to ordinate plots as forest 153 

succession and old-growth evaluation with the forest attributes (Braumandl and Holt 2000, Table 154 

2). This statistical analysis was used to select the attributes that better classify forest, which were 155 

then used to create an old-growth index. 156 



Table 2 Method utilized to identify and map old-growth forests 157 

Method Description Reference 

Field metrics Classification of forest succession in a stand level based on age thresholds defined 

for each Biogeoclimatic (BEC) zone and fire return interval, utilizing outdated forest 

cover maps.  

(MFLNRORD 1995) 

 
Use a series of forest attributes associated with old-growth forest to create an old-

growth index succession and evaluate old-growth forest reserves in different BEC 

zones.  

(Braumandl and Holt 

2000, Holt 2000, Holt 

et al. 2001, 2002, 

DeLong et al. 2004)  
Reviewed and listed a series of forest attributes strongly associated with old-growth 

forest to identify silvicultural approaches that could promote old-growth forests.  

(Bauhus et al. 2009) 

 
Evaluated different plot sizes to determine the minimum plot that still captures old-

growth indicators (e.g. number of living trees, trees with DBH >50cm, dead wood 

volume, etc).  

(Lombardi et al. 

2015) 

 
Review of old-growth static and dynamic attributes and use of cohort basal area ratio 

(understory cohort/post-disturbance cohort) as a proxy for old-growth forests in 

boreal forest, simultaneously addressing the dynamic nature of forest.  

(Kneeshaw and 

Burton 1998, 

Kneeshaw and 

Gauthier 2003)  
Mapping of individual stems and their respective features (e.g. height, crown area) in 

temperate old-growth forests to study forest structure and dynamics.   

(Chen and Bradshaw 

1999, Hao et al. 

2007) 

Optical 

Sensors 

Forest succession model (ZELIG) and a canopy reflectance model (GORT) were 

applied to compare with forest succession from Landsat TM and test the potential of 

remote sensing on mapping successional stages.  

(Song et al. 2007) 

 
Landsat ETM+ combined with ecological land unit classifications.  (Bergen and Dronova 

2007)  
Landsat TM image resampled to 25m cell size and 106 ground reference stands of 

tree density, basal area.  

(Cohen et al. 1995) 

 
Mapping of structural stage classes with Landsat TM data through ISODATA 

analysist technique.  

(Miller et al. 2003) 

 
Spatial manifestation of forest succession in optical imagery (Landsat TM) through 

three types of model.  

(Song and Woodcock 

2002) 
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LiDAR Use of Lidar delivered metrics (e.g. height percentiles and statistics, % of vegetation 

returns, % of first returns, and etc.)  with Random Forests statistical analysis to 

identify seven stages of forest succession.  

(Falkowski et al. 

2009) 

 

Documented increasing vertical structure complexity along five development stages 

in western coastal forests with five field, six LiDAR metrics, and their combination.  

(Kane et al. 2010b) 

 

Use of LiDAR-delivered tree height variance to distinguish between single-story 

(young forests) and multistory vertical structural classes (old forests).  

(Zimble et al. 2003) 

 

Use of two principal components (PCA) of the Integration of airborne LiDAR (canopy 

height model) and spectral data (12 wavebands of HyMap) to perform an unsupervised 

classification of forest classes.  

(Hill and Thomson 

2005) 

 

Estimated stand age across 158 plots in managed Boreal forest with forest structures 

and site attributes delivered from LiDAR. 

(Racine et al. 2014) 

158 



2.3.2. Lidar processing: 159 
LAStools were utilized to process LiDAR point cloud and obtain ecological meaningful 160 

metrics for old-growth forests (Figure 2). Table 3 summarizes important studies using LiDAR to 161 

measure old-growth attributes. For vegetation estimates, the production of an accurate DTM is a 162 

major output from ALS, since DTM errors are propagated into vegetation estimates (Goodwin et 163 

al. 2006). Two operational steps are employed to produce DTMs out of an ALS point cloud: 164 

separation of the ground (last returns) and non-ground points (first returns), and then 165 

interpolation of the separated ground points (Aryal et al. 2017). Tree height is one of the most 166 

fundamental measurements in the forest industry and has a critical role in the quantitative 167 

assessment of forest biomass, carbon stocks, growth, and site productivity (Andersen et al. 168 

2006). In addition, it has been shown to be highly variable throughout forest succession, being 169 

considered an important old-growth attribute (Table 2). Tree height is extracted from the 170 

difference between the Digital Surface Model (DSM) and DTM, where DSM is derived from the 171 

first returns and DTM from the last (Hopkinson et al. 2006, Andersen et al. 2006, Aryal et al. 172 

2017).   173 

Forest gap properties have a great role on forest dynamics and composition (Koukoulas 174 

and Blackburn 2004a). Moreover, White et al. (2018) and others (Table 2) observed that ALS 175 

could derive accurate information of canopy gaps in a landscape scale. Gaps’ size, area and 176 

shape differ greatly depending on forest stage (White et al. 2018), and thus could be used to 177 

differentiate forest succession. For the purpose of this work, I obtained a LiDAR metric for 178 

canopy cover (vegetation point >3m high/ground points) to represent these differences. While 179 

this metric does not measure canopy gap directly, canopy closure seems to be enough to depict 180 

the differences in canopy openness in different forest successions once used together with other 181 

old-growth attributes developed for this work, such as vertical complexity.  182 
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Old-growth stands seem to display a complex canopy structure throughout the height 183 

range of the stands, whereas young stands have more clearly defined canopy layers (Spies and 184 

Franklin 1991). Vertical complexity attribute has been estimated in a variety of manners (Table 185 

2), but I will utilized the coefficient of variation (CV) of ALS-derived tree heights according as it 186 

has been proven to have high correlation with the number and complexity of canopy strata 187 

(Zimble et al. 2003). 188 

Another important ecological attribute that can be used to differentiate between forest 189 

successions is understory density. Here, I applied the method described by (Wing et al. 2012), 190 

where they created raster for ground returns density and understory density. Most studies used 191 

only understory density. However, due to overlapping flight lines and other factors, the density 192 

of points are usually higher on the edge of the LiDAR and not only on the amount of intercepting 193 

objects on the ground. Thus, I described here understory density as a ratio between the point 194 

density of the understory strata and ground returns, minimizing the effect of flight lines with the 195 

point density. 196 

As listed in Table 3, some studies have used the intensity values of each LiDAR return to 197 

determine rather or not the return is from a living or dead material. While such techniques seems 198 

to deliver accurate predictions, it requires a calibration of the LiDAR instrument prior to the data 199 

collection. The LiDAR data collected for this study do not count with such pre calibration. Thus, 200 

I will use statistical models to predict snags’ density, since I cannot count with intensity values to 201 

obtain it directly from LiDAR metrics.202 



Table 3 Airborne LiDAR delivered metrics for old-growth forest attributes with area based approach (ABA) and individual tree 203 
detection (IDT) 204 

Old-Growth 

Attribute* 
Lidar Estimators Scale Reference 

 Tree height 
Treetops were detected with the highest return of point cloud from each tree and 

compared with high precision field measured of treetops. 
ITD (Andersen et al. 2006) 

 Estimation of plot based height measurements (e.g. average, maximum, standard 

deviation) with LiDAR delivered metrics, indicating correlation close to 1:1. 
ABA 

(Hopkinson et al. 2006, 

Goodwin et al. 2006) 

Basal area 
Random Forest models were developed with LiDAR delivered metrics with and 

without intensity metrics to predict total, live and dead basal area. 
ABA (Bright et al. 2013) 

 Number of 

dead standing 

trees (snags) 

Filtering algorithm based on density and intensity statistics to remove points 

associated with living trees, followed by an individual tree detection procedure. 
ITD (Wing et al. 2015) 

 Correlation of height metrics with field observed frequency of snags to estimate 

snag frequency for the landscape.  
ABA (Bater et al. 2009) 

  

Median absolute deviation of height was associated with the abundance of snags 

in different DBH classes, as well as different other canopy and topography 

metrics, using Random forest algorithm 

ABA (Martinuzzi et al. 2009) 
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Intensity, density and height statistics were used to estimate basal area (BA) of 

live, dead trees, and total BA through Random Forest models 
ABA (Bright et al. 2013) 

Structural 

Complexity 
Canopy volume profile estimates and leaf area index (LAI) ABA 

(Lefsky et al. 1999, 

Coops et al. 2007) 

  
Complexity of vertical forest structure was estimated with LiDAR derived height 

variance 
ABA (Zimble et al. 2003) 

  

Indicates that the 95th height percentile, rumple (ratio of canopy outer surface 

area to ground surface area), and canopy density had the strongest correlation 

with field measured stand complexity. 

ABA 
(Kane et al. 2010b, 

2010a) 

Biomass 

  

LiDAR height percentile (h80) and crown width (CW) measurement were the 

best metrics for aboveground biomass (AGB) estimates using a multilinear model  

ITD 
(Wan-Mohd-Jaafar et 

al. 2017) 

  

Quantiles and full returns against field measurement, and other simple LiDAR 

metrics were tested against field estimates with correlation analysis and 

multilinear models 

ABA 

(Næsset 2011, Ahmed 

et al. 2013, Næsset et 

al. 2013) 

Understory 

Density 

First returns in a specific range of intensity in lower strata of the canopy was 

utilized to estimate live understory distribution 
ABA 

(Koukoulas and 

Blackburn 2004a, 

Vepakomma et al. 

2008, Wing et al. 2012, 

White et al. 2018) 

  

 Proportion of ground returns, vegetation return between 1 and 2.5 m in height 

and percent slope times cosine of aspect were fed to a random forest model to 

predict presence and absence of understory vegetation  

ABA (Martinuzzi et al. 2009) 
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LiDAR delivered metrics were proven more accurate predictors of coarse woody 

debris (CWD) than field measurement of living trees, and indicated as important 

auxiliaries in the prediction of CWD in the landscape 

ABA 

(Seielstad and Queen 

2003, Pesonen et al. 

2008, 2009) 

Canopy Gap 

 

Canopy gap was measured based on a canopy height mode (CHM) with a height 

threshold measured during field (4-5m) and gap area of 5m2. Slope from CHM 

was also an important feature to map canopy gaps.  

ABA 

(Koukoulas and 

Blackburn 2004b, 

Vepakomma et al. 

2008) 

 
Applied a fixed and variable height thresholds to a 1m resolution CHM to detect 

gaps, further filtered by area. Gap areas <5m2 and >2ha were excluded. 
ABA (White et al. 2018) 

* Old-growth attributes listed above were the most common attributes found in different studies (Table 1), with  Bauhus et al. (2009) as 205 
the main source206 



 207 

Figure 1 Pipeline of LiDAR processing using LASTools from the raw LiDAR files (.las)  to the raster outputs (.bil) used to create 208 
ecological meaningful metrics for old-growth attributes209 



 210 

2.4. Statistical analysis: 211 
I applied the random forest (RF) statistical model, using the "randomforest" package 212 

(Therneau et al. 2011, Cutler and Wiener 2018) in the R (R Development Core Team 2018) 213 

programming environment. RF is a machine learning method that adds randomness by randomly 214 

selecting subsets of the data without replacement, which increases the diversity of decision trees 215 

("Regression Trees"). RF combines decision trees, considering the values of an independent 216 

random sample, with the same distribution for all the trees in the forest (Breiman 2001). 217 

 Breiman and Cutler (2003) recommend that one-third of the total number of explanatory 218 

variables be randomly selected. As 4 independent variables were used in this study, 2 were 219 

considered in each division. I set the random forest model to produce 1000 decision trees to 220 

ensure stabilization of the model, each tree using a subsample from 70% of the available data. 221 

The remaining 30% of the data were reserved for validation of the model as a test sample. 222 

Random forest was applied in its regression and classification mode to generate two different 223 

models to predict old-growth forest in the landscape. 224 

 225 

3. RESULTS: 226 
Since I still do not yet have access to the empirical data to perform a PCA and K-mean 227 

clustering analysis, the old-growth index was delivered from the sum of all old-growth attributes 228 

delivered from LiDAR. 229 

I first perform a Pearson’s correlation to observe how the metrics developed in this study 230 

were correlated with the old-growth index developed from “empirical data” (Figure 2). Canopy 231 

cover and 90th percentile of height were the most correlated metrics (0.83 and 0.68), although 232 

they have strong correlation among themselves (0.68). Both metrics are derived from a similar 233 

portion of the LiDAR point clound. While canopy cover is generated from the density of returns 234 
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from the strata higher than 3m, 90th percentile is delivered from all return between 1.3m high and 235 

the 90% of the height distribution within the pixel. As well, vertical complexity, which is 236 

delivered from the coefficient of variation of heights from all returns greater than 1.3m, had a 237 

high correlation with the 90th percentile of height distribution. Even though the 90th percentile 238 

have a strong correlation with vertical complexity and canopy cover, each helped to differentiate 239 

a different forest succession (Figure 3). In addition, all metrics had a strong correlation with the 240 

old-growth index, except wetness index (Figure 2).  241 

Wetness index is a topographic metric, which indicates values to areas depending on the 242 

likelihood of retaining moisture. Higher values are assigned to concave topography features such 243 

as creeks, and lower values to convex such as mountain’s tops. Since fire is the main natural 244 

disturbance in the study area, it was expected that areas that would contain higher values for old-245 

growth attributes to be in wetter regions, less likely to be affected by the fires. This would 246 

generate a bias in old-growth forest mapping, as old-growth forest are not present only on areas 247 

less affected by fires (DellaSala et al. 1996). However, wetness index had a very small 248 

correlation with the old-growth index, which can also be observed in the boxplot in Figure 3. 249 
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 250 

Figure 2 Pearson's correlation for old-growth attributes and old-growth index 251 

 Figure 3 depicts the distribution of LiDAR metrics in each forest succession for the plots 252 

measured on the field.  Canopy cover was highest for plots in mature stands, average of 70%, 253 

where trees crown would be denser right before tree gap dynamics start creating more opening in 254 

the upper strata due to tree fall. In both young and old-growth stand, canopy cover is less dense. 255 

However, while the average of canopy cover for young stand were 30%, it was approximately 256 

50% for old-growth stands. Vertical complexity displayed similar results for young and mature 257 

stands. However, regeneration and old-growth stands were clearly differentiated from the other 258 

forest succession types. In the same way, the mean for 90th percentile of height had similar 259 

results for mature and old-growth stands, even though the range of height distribution was wider 260 

for old-growth stands. Understory density was the metric that most differentiated old-growth 261 

stands from the others. Wetness index shows very little difference between the forest succession 262 

types (not statistical), which suggested a well distribution of forest succession types in all 263 

wetness ranges. While each metric, except wetness index, contributed individually to 264 

differentiate one or two forest succession, only the combination of the four metrics generates an 265 

increase gradient of old-growth index from regeneration to old-growth plots.  266 
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  267 

 268 

Figure 3 Boxplot distributions for all old-growth attributes, wetness index and the old-growth 269 
index for the 110 plots measure on the ground. 270 

 271 

3.1. Random forest: 272 
I developed two type of random forest models: one for classification (Table 4 and 5) and 273 

other for regression (Table 6). For both models, canopy cover was the most important metric 274 

followed by understory densidy, the later being the most important for the old-growth class. 275 

As classification: 276 

Table 4 Level of importance of each LiDAR metric in prediction old-growth forest 277 

 
Regeneration Young Mature 

Old-

Growth MDA* MDG** 

Canopy Cover 37.586 67.273 85.898 5.163 84.335 35.008 

Vertical complexity 13.900 17.763 8.411 14.152 24.407 10.599 

90% Height 16.670 21.341 20.035 8.595 28.005 12.857 

Understory Density 6.298 17.800 21.638 43.072 41.154 12.684 

Wetness Index -0.829 1.074 9.866 2.481 8.963 2.983 

*Mean Decrease Accuracy 278 
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**Mean Decrease Gini 279 
 280 

Table 5 Confusion matrix for forest succession classification 281 

 Regeneration Young Mature 

Old-

Growth class.error 

Regeneration 18 2 0 0 0.100 

Young 0 28 0 0 0.000 

Mature 0 0 43 1 0.023 

Old-Growth 1 1 4 8 0.429 

* OOB estimate of error rate: 8.49% 282 
**1000 decision trees were created with 2 variables tried at each split with a classification 283 
method 284 
 285 

As regresssion:                      286 

 287 
Table 6 Level of importance of each LiDAR metric in the regression model for the landscape 288 
prediction of old-growth index 289 

Variables %IncMSE IncNodePurity 

Canopy Cover 45.213 12.385 

Vertical complexity 18.842 5.012 

90% Height 27.209 9.881 

Understory Density 32.231 5.034 

Wetness Index 13.223 1.170 

*Mean of squared residuals: 0.02464584, % Variance explained: 92.33 290 
** Number of trees: 1000, No. of variables tried at each split: 2 291 
 292 
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 293 

Figure 4 Forest was classified into I) four different forest successions (classification) and II) 294 
gradient of the abundance of old-growth attributes (regression). Fourteen locations were visited 295 
to evaluate the effectiveness of these two classifications. Four of those sites are depicted here: a) 296 
depicts low level of old-growth attributes (young forest), b) bare rock c) intermediate level of 297 
old-growth attributes. 298 

 299 
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 300 

Figure 5 Summary of the forest succession cover obtained from the classification and regression 301 
models, where a) displays the percentage cover of each forest succession class for the whole 302 
landscape and only for the areas covered by OGMAs, and b) depicts the distribution of OGMAs 303 
in terms of percentage of area classified as old-growth forests 304 

 305 

4. NEXT STEPS: 306 
 307 

• Analyzing  empirical data and apply K-mean clustering and PCI statists to classify plots 308 

into forest succession and abundance of old-growth attributes; 309 

• Validation of LiDAR metrics; 310 

• Reprocessing of Random forest models with forest succession classification and old-311 

growth index from empirical data; 312 

• Reevaluation of OGMAs based on the percentage of area covered by old-growth forests; 313 

• Selecting OGMAs purely based on old-growth attributes; 314 

• Identifying the trade-offs (e.g. loss of topographic variability representation) between 315 

current OGMAs and OGMAs selected purely based old-growth attributes316 



24 
 

5. REFERENCES: 
 
Ahmed, R., P. Siqueira, and S. Hensley. 2013. A study of forest biomass estimates from lidar in 

the northern temperate forests of New England. Remote Sensing of Environment 

130:121–135. 

Andersen, H.-E., S. E. Reutebuch, and R. J. McGaughey. 2006. A rigorous assessment of tree 

height measurements obtained using airborne lidar and conventional field methods. 

Canadian Journal of Remote Sensing 32:355–366. 

Aryal, R. R., H. Latifi, M. Heurich, and M. Hahn. 2017. Impact of Slope, Aspect, and Habitat-Type 

on LiDAR-Derived Digital Terrain Models in a Near Natural, Heterogeneous Temperate 

Forest. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation 

Science:1–13. 

Bater, C. W., N. C. Coops, S. E. Gergel, V. LeMay, and D. Collins. 2009. Estimation of standing 

dead tree class distributions in northwest coastal forests using lidar remote sensing. 

Canadian Journal of Forest Research 39:1080–1091. 

Bauhus, J., K. Puettmann, and C. Messier. 2009. Silviculture for old-growth attributes. Forest 

Ecology and Management 258:525–537. 

Bergen, K. M., and I. Dronova. 2007. Observing succession on aspen-dominated landscapes 

using a remote sensing-ecosystem approach. Landscape Ecology 22:1395–1410. 

Braumandl, T., and R. Holt. 2000. Refining definitions of old growth:4. 

Breiman, L. 2001. Random Forests. Machine Learning 45:5–32. 

Breiman, L., and A. Cutler. 2003. Setting Up, And Understanding Random Forests V4.0. Pages 5–

32. 



25 
 

Bright, B. C., A. T. Hudak, R. McGaughey, H.-E. Andersen, and J. Negrón. 2013. Predicting live 

and dead tree basal area of bark beetle affected forests from discrete-return lidar. 

Canadian Journal of Remote Sensing 39:S99–S111. 

Chen, J., and G. A. Bradshaw. 1999. Forest structure in space: a case study of an old growth 

spruce-fir forest in Changbaishan Natural Reserve, PR China. Forest Ecology and 

Management 120:219–233. 

Cohen, W. B., T. A. Spies, and M. Fiorella. 1995. Estimating the age and structure of forests in a 

multi-ownership landscape of western Oregon, U.S.A. International Journal of Remote 

Sensing 16:721–746. 

Coops, N. C., T. Hilker, M. A. Wulder, B. St-Onge, G. Newnham, A. Siggins, and J. A. (Tony) 

Trofymow. 2007. Estimating canopy structure of Douglas-fir forest stands from discrete-

return LiDAR. Trees 21:295. 

Cutler, F. original by L. B. and A., and R. port by A. L. and M. Wiener. 2018. randomForest: 

Breiman and Cutler’s Random Forests for Classification and Regression. 

DellaSala, D. A., J. R. Strittholt, R. F. Noss, and D. M. Olson. 1996. A Critical Role for Core 

Reserves in Managing Inland Northwest Landscapes for Natural Resources and 

Biodiversity. Wildlife Society Bulletin (1973-2006) 24:209–221. 

DeLong, S. C., P. J. Burton, and M. Harrison. 2004. Assessing the relative quality of old-growth 

forest 4:16. 

Environmental Law Centre. 2013. An Old Growth Protection Act for British Columbia. University 

of Victoria. 



26 
 

Falkowski, M. J., J. S. Evans, S. Martinuzzi, P. E. Gessler, and A. T. Hudak. 2009. Characterizing 

forest succession with lidar data: An evaluation for the Inland Northwest, USA. Remote 

Sensing of Environment 113:946–956. 

FAO. 2016. State of the World’s Forests 2016 | FAO | Food and Agriculture Organization of the 

United Nations. http://www.fao.org/publications/sofo/en/. 

Goodwin, N. R., N. C. Coops, and D. S. Culvenor. 2006. Assessment of forest structure with 

airborne LiDAR and the effects of platform altitude. Remote Sensing of Environment 

103:140–152. 

Hao, Z., J. Zhang, B. Song, J. Ye, and B. Li. 2007. Vertical structure and spatial associations of 

dominant tree species in an old-growth temperate forest. Forest Ecology and 

Management 252:1–11. 

Hilbert, J., and A. Wiensczyk. 2007. Old-growth definitions and management: A literature 

review. Journal of Ecosystems and Management 8. 

Hill, R. A., and A. G. Thomson. 2005. Mapping woodland species composition and structure 

using airborne spectral and LiDAR data. International Journal of Remote Sensing 

26:3763–3779. 

Holt, R. F. 2000. Inventory and Tracking of Old Growth Conservation Values for Landscape Unit 

Planning. 

Holt, R. F., D. J. MacKillop, and T. Braumandl. 2001. Definitions of old-growth in the MSdk BEC 

unit in the Nelson Forest Region. Nelson Forest Region. 

Holt, R. F., D. J. MacKillop, and T. Braumandl. 2002. Defining Old-Growth Forest in the ICHWK1 

BEC Variant in the Nelson Forest Region. Nelson Forest Region. 



27 
 

Holt, R., K. Price, L. Kremsater, A. MacKinnon, and K. Lertzman. 2008. Defining old growth and 

recovering old growth on the coast: discussion of options:16. 

Hopkinson, C., L. Chasmer, K. Lim, P. Treitz, and I. Creed. 2006. Towards a universal lidar canopy 

height indicator. Canadian Journal of Remote Sensing 32:139–152. 

Hyde, P., R. Dubayah, W. Walker, J. B. Blair, M. Hofton, and C. Hunsaker. 2006. Mapping forest 

structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, 

Quickbird) synergy. Remote Sensing of Environment 102:63–73. 

Hyyppä, J., H. Hyyppä, D. Leckie, F. Gougeon, X. Yu, and M. Maltamo. 2008. Review of methods 

of small‐footprint airborne laser scanning for extracting forest inventory data in boreal 

forests. International Journal of Remote Sensing 29:1339–1366. 

Isbell, F., V. Calcagno, A. Hector, J. Connolly, W. S. Harpole, P. B. Reich, M. Scherer-Lorenzen, B. 

Schmid, D. Tilman, J. van Ruijven, A. Weigelt, B. J. Wilsey, E. S. Zavaleta, and M. Loreau. 

2011. High plant diversity is needed to maintain ecosystem services. Nature 477:199. 

Kane, V. R., J. D. Bakker, R. J. McGaughey, J. A. Lutz, R. F. Gersonde, and J. F. Franklin. 2010a. 

Examining conifer canopy structural complexity across forest ages and elevations with 

LiDAR data. Canadian Journal of Forest Research 40:774–787. 

Kane, V. R., R. J. McGaughey, J. D. Bakker, R. F. Gersonde, J. A. Lutz, and J. F. Franklin. 2010b. 

Comparisons between field- and LiDAR-based measures of stand structural complexity. 

Canadian Journal of Forest Research 40:761–773. 

Keränen, J., J. Peuhkurinen, P. Packalen, and M. Maltamo. 2015. Effect of minimum diameter at 

breast height and standing dead wood field measurements on the accuracy of ALS-

based forest inventory. Canadian Journal of Forest Research 45:1280–1288. 



28 
 

Kneeshaw, D. D., and P. J. Burton. 1998. Assessment of functional old-growth status: A case 

study in the Sub-Boreal Spruce zone of British Columbia, Canada. Natural Areas Journal 

18. 

Kneeshaw, D., and S. Gauthier. 2003. Old growth in the boreal forest: A dynamic perspective at 

the stand and landscape level. Environmental Reviews 11:S99–S114. 

Koukoulas, S., and G. A. Blackburn. 2004a. Quantifying the spatial properties of forest canopy 

gaps using LiDAR imagery and GIS. International Journal of Remote Sensing 25:3049–

3072. 

Koukoulas, S., and G. A. Blackburn. 2004b. Quantifying the spatial properties of forest canopy 

gaps using LiDAR imagery and GIS. International Journal of Remote Sensing 25:3049–

3072. 

Lefsky, M. A., W. B. Cohen, S. A. Acker, G. G. Parker, T. A. Spies, and D. Harding. 1999. Lidar 

Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir 

Western Hemlock Forests. Remote Sensing of Environment 70:339–361. 

Lefsky, M. A., W. B. Cohen, G. G. Parker, and D. J. Harding. 2002. Lidar Remote Sensing for 

Ecosystem StudiesLidar, an emerging remote sensing technology that directly measures 

the three-dimensional distribution of plant canopies, can accurately estimate vegetation 

structural attributes and should be of particular interest to forest, landscape, and global 

ecologists. BioScience 52:19–30. 

Lombardi, F., M. Marchetti, P. Corona, P. Merlini, G. Chirici, R. Tognetti, S. Burrascano, A. 

Alivernini, and N. Puletti. 2015. Quantifying the effect of sampling plot size on the 



29 
 

estimation of structural indicators in old-growth forest stands. Forest Ecology and 

Management 346:89–97. 

Luyssaert, S., E.-D. Schulze, A. Börner, A. Knohl, D. Hessenmöller, B. E. Law, P. Ciais, and J. 

Grace. 2008. Old-growth forests as global carbon sinks. Nature 455:213. 

MA. 2005. Millennium Ecosystem Assessment. 

https://www.millenniumassessment.org/en/Condition.html#download. 

Martinuzzi, S., L. A. Vierling, W. A. Gould, M. J. Falkowski, J. S. Evans, A. T. Hudak, and K. T. 

Vierling. 2009. Mapping snags and understory shrubs for a LiDAR-based assessment of 

wildlife habitat suitability. Remote Sensing of Environment 113:2533–2546. 

Meng, X., N. Currit, and K. Zhao. 2010. Ground Filtering Algorithms for Airborne LiDAR Data: A 

Review of Critical Issues. Remote Sensing 2:833–860. 

MFLNRORD. 1995. Biodiversity guidebook. Forest Practices code, Victoria, BC. 

MFLNRORD. 2003. BC Forests Geographical Snapshot. 

https://www.for.gov.bc.ca/scripts/hfd/pubs/hfdcatalog/index.asp. 

MFLNRORD. 2017a. Community Forest Agreements. https://www.for.gov.bc.ca/hth/timber-

tenures/community/index.htm. 

MFLNRORD. 2017b. Change Monitoring Inventory (CMI) - Ground Sampling Procedures. 

https://www.for.gov.bc.ca/hts/risc/pubs/teveg/cmi_sampling_procedure_2017/CMI_Gr

ound_Sampling_Procedures_2017.pdf. 

Miller, J. D., S. R. Danzer, J. M. Watts, S. Stone, and S. R. Yool. 2003. Cluster analysis of 

structural stage classes to map wildland fuels in a Madrean ecosystem. Journal of 

Environmental Management 68:239–252. 



30 
 

Mosseler, A., J. A. Lynds, and J. E. Major. 2003a. Old-growth forests of the Acadian Forest 

Region. Environmental Reviews 11:S47–S77. 

Mosseler, A., J. E. Major, and O. P. Rajora. 2003b. Old-growth red spruce forests as reservoirs of 

genetic diversity and reproductive fitness. Theoretical and Applied Genetics 106:931–

937. 

Mosseler, A., I. Thompson, and B. A. Pendrel. 2003c. Overview of old-growth forests in Canada 

from a science perspective. Environmental Reviews 11:S1–S7. 

Næsset, E. 2011. Estimating above-ground biomass in young forests with airborne laser 

scanning. International Journal of Remote Sensing 32:473–501. 

Næsset, E., T. Gobakken, O. M. Bollandsås, T. G. Gregoire, R. Nelson, and G. Ståhl. 2013. 

Comparison of precision of biomass estimates in regional field sample surveys and 

airborne LiDAR-assisted surveys in Hedmark County, Norway. Remote Sensing of 

Environment 130:108–120. 

Næsset, E., and T. Økland. 2002. Estimating tree height and tree crown properties using 

airborne scanning laser in a boreal nature reserve. Remote Sensing of Environment 

79:105–115. 

Pesonen, A., O. Leino, M. Maltamo, and A. Kangas. 2009. Comparison of field sampling methods 

for assessing coarse woody debris and use of airborne laser scanning as auxiliary 

information. Forest Ecology and Management 257:1532–1541. 

Pesonen, A., M. Maltamo, K. Eerikäinen, and P. Packalèn. 2008. Airborne laser scanning-based 

prediction of coarse woody debris volumes in a conservation area. Forest Ecology and 

Management 255:3288–3296. 



31 
 

R Development Core Team. 2018. R: The R Project for Statistical Computing. https://www.r-

project.org/. 

Racine, E. B., N. C. Coops, B. St-Onge, and J. Bégin. 2014. Estimating Forest Stand Age from 

LiDAR-Derived Predictors and Nearest Neighbor Imputation. Forest Science 60:128–136. 

Reutebuch, S. E., H.-E. Andersen, and R. J. McGaughey. 2005. Light Detection and Ranging 

(LIDAR): An Emerging Tool for Multiple Resource Inventory. Journal of Forestry 103:286–

292. 

Seielstad, C. A., and L. P. Queen. 2003. Using Airborne Laser Altimetry to Determine Fuel 

Models for Estimating Fire Behavior. 

Song, C., T. A. Schroeder, and W. B. Cohen. 2007. Predicting temperate conifer forest 

successional stage distributions with multitemporal Landsat Thematic Mapper imagery. 

Remote Sensing of Environment 106:228–237. 

Song, C., and C. E. Woodcock. 2002. The spatial manifestation of forest succession in optical 

imagery: The potential of multiresolution imagery. Remote Sensing of Environment 

82:271–284. 

Spies, T. A. 2004. Ecological Concepts and Diversity of Old-Growth Forests. Journal of Forestry 

102:14–20. 

Spies, T. A., and J. F. Franklin. 1991. The Structure of Natural Young, Mature, and Old-Growth 

Douglas-Fir Forests in Oregon and Washington. 

https://andrewsforest.oregonstate.edu/sites/default/files/lter/pubs/pdf/pub1244.pdf. 

Therneau, T. M., E. J. Atkinson, and M. Foundation. 2011. An Introduction to Recursive 

Partitioning Using the RPART Routines. Page 67. Mayo Clinic, Rochester (MM). 



32 
 

Vepakomma, U., B. St-Onge, and D. Kneeshaw. 2008. Spatially explicit characterization of boreal 

forest gap dynamics using multi-temporal lidar data. Remote Sensing of Environment 

112:2326–2340. 

Wan-Mohd-Jaafar, W., I. Woodhouse, C. Silva, H. Omar, and A. Hudak. 2017. MODELLING 

INDIVIDUAL TREE ABOVEGROUND BIOMASS USING DISCRETE RETURN LIDAR IN 

LOWLAND DIPTEROCARP FOREST OF MALAYSIA. Journal of Tropical Forest Science 

29:465–484. 

Watson, J. E. M., T. Evans, O. Venter, B. Williams, A. Tulloch, C. Stewart, I. Thompson, J. C. Ray, 

K. Murray, A. Salazar, C. McAlpine, P. Potapov, J. Walston, J. G. Robinson, M. Painter, D. 

Wilkie, C. Filardi, W. F. Laurance, R. A. Houghton, S. Maxwell, H. Grantham, C. Samper, S. 

Wang, L. Laestadius, R. K. Runting, G. A. Silva-Chávez, J. Ervin, and D. Lindenmayer. 

2018. The exceptional value of intact forest ecosystems. Nature Ecology & Evolution 

2:599–610. 

Watson, J. E. M., D. F. Shanahan, M. Di Marco, J. Allan, W. F. Laurance, E. W. Sanderson, B. 

Mackey, and O. Venter. 2016. Catastrophic Declines in Wilderness Areas Undermine 

Global Environment Targets. Current Biology 26:2929–2934. 

White, J. C., P. Tompalski, N. C. Coops, and M. A. Wulder. 2018. Comparison of airborne laser 

scanning and digital stereo imagery for characterizing forest canopy gaps in coastal 

temperate rainforests. Remote Sensing of Environment 208:1–14. 

Wing, B. M., M. W. Ritchie, K. Boston, W. B. Cohen, A. Gitelman, and M. J. Olsen. 2012. 

Prediction of understory vegetation cover with airborne lidar in an interior ponderosa 

pine forest. Remote Sensing of Environment 124:730–741. 



33 
 

Wing, B. M., M. W. Ritchie, K. Boston, W. B. Cohen, and M. J. Olsen. 2015. Individual snag 

detection using neighborhood attribute filtered airborne lidar data. Remote Sensing of 

Environment 163:165–179. 

Wulder, M. A., C. W. Bater, N. C. Coops, T. Hilker, and J. C. White. 2008. The role of LiDAR in 

sustainable forest management - The Forestry Chronicle. http://pubs.cif-

ifc.org/doi/abs/10.5558/tfc84807-6. 

Zimble, D. A., D. L. Evans, G. C. Carlson, R. C. Parker, S. C. Grado, and P. D. Gerard. 2003. 

Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote 

Sensing of Environment 87:171–182. 

 


	1. INTRODUCTION:
	2. MATERIAL AND METHOD:
	2.1. Study Area:
	2.2. Data:
	2.3. Methods:
	2.3.1. Empirical data processing:
	2.3.2. Lidar processing:
	2.4. Statistical analysis:

	3. RESULTS:
	3.1. Random forest:

	4. NEXT STEPS:



