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a University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada 
b FRBC/Slocan Mixedwood Ecology Chair, Ecosystem Science & Management Program, University of Northern British Columbia, 3333 University Way, Prince George, B. 
C V2N 4Z9, Canada   

A R T I C L E  I N F O   

Keywords: 
Community forest 
Conservation 
Ecosystem service 
Old-growth management area (OGMA) 
Aerial Laser scanning (ALS, LiDAR) 
Remote sensing 

A B S T R A C T   

Forests in their later stages of development attain attributes that support biodiversity and provide a variety of 
ecological benefits (e.g. clean water and carbon storage). Despite their values, old-growth forests are declining 
worldwide in part due to anthropogenic pressures. A persistent challenge to managing and conserving old- 
growth forest has been establishing a reliable method for measuring old-growth values across large landscapes 
at an appropriately fine ecological and spatial scale. Using data from a community-managed forest in central 
British Columbia, Canada, an Aerial Laser Scanning (ALS) based metric was developed, using a random forest 
modeling framework, to predict an old-growth index across the forest. Using this old-growth index, we estimated 
that forests with “Very-high” old-growth values cover 14.7% of the study area (18,183.2 ha), and that only 25% 
(4,545.9 ha) of this “very-high” old growth value areas are current inside designated old-growth management 
areas (OGMAs). Additionally, the forests with “very-high” old-growth values that are currently inside OGMAs are 
fragmented, as only 1 out of 40 OGMAs have more than 50% of its area covered by forests with “Very-high” old- 
growth value. This research provides a clear ecological indicator that uses fine-scale remotely sensed data to 
measure old-growth and assess its conservation status within reserves. While the index developed is specific to 
the study site, the framework, is generic enough to be adapted to other forest types and ecosystems. More 
importantly, the identification of the amount and location of old-growth forests over the landscape can aid in the 
management and conservation of this rare resource and its services.   

1. Introduction 

Forests that are at an advanced development stage, often referred to 
as old-growth (Mosseler et al., 2003c; Spies, 2004; Hilbert and 
Wiensczyk, 2007), provide a range of ecological and socio-economic 
benefits, such as ecotourism (FAO and UNEP, 2020), genetic resources 
(Mosseler et al., 2003b), carbon storage and sequestration (Luyssaert 
et al., 2008; Maxwell et al., 2019), water provision (Bithell and Bra-
sington, 2009), indigenous cultural values, and the maintenance of 
human health (Wirth et al., 2009a; Watson et al., 2018). Strategies to 
promote the retention of old-growth forests are often incorporated into 
landscape level forest planning (Arsenault, 2003; Gillis et al., 2003; 
Environmental Law Centre, 2013). However, the identification of old- 
growth is a difficult task due to the lack of a standard definition for 
what constitutes an old-growth forest (Hilbert and Wiensczyk, 2007). 
Old-growth forests are often defined in terms of longevity of dominant 

species, return period of natural disturbances, degree of human inter-
vention, shade tolerance, and abundance of specific structures such as 
the number of large trees, snags, accumulated woody debris (Mosseler 
et al., 2003c, 2003a; Spies, 2004; Bauhus et al., 2009). These ecological 
differences with regard to the definition of old-growth across forest 
types pose a significant methodological challenge to the characteriza-
tion of these forests only based on disturbance frequency. 

There are multiple definitions and approaches to define and locate 
old-growth forests (Wirth et al., 2009b), but tree or forest age is often 
used as a simple proxy. For example, according to British Columbia’s 
Ministry of Forest, Lands, Natural Resource Operations and Rural 
Development (MFLNRORD, 2003), the province’s coastal forests are 
considered old-growth if trees are >250 years old. For forests dominated 
by lodgepole pine or broadleaf species in the northern interior, old- 
growth are forests with stands >120 years of age. In these landscapes, 
the longevity of trees tends to be shorter, and disturbances more 
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frequent. Although age is a useful proxy, its measurement with tradi-
tional field methods is costly (Racine et al., 2014), and intractable at 
landscape scales. More importantly, essential structural elements of old- 
growth can be omitted using only an age threshold (Arsenault, 2003; 
Gillis et al., 2003; Holt et al., 2008; McMullin and Wiersma, 2019). This 
inaccuracy can lead to management that under represents old-growth 
forest in the landscape, or incorrectly identifies forests as being old- 
growth even though they do not exhibit the desired characteristics. As 
a result, in many areas, it may be prudent to compliment simple age 
dependent thresholds for old-growth definition with a more ecologically 
based representation of forest structures (Mosseler et al., 2003a; Spies, 
2004; Hilbert and Wiensczyk, 2007). 

Compared with old forests, young natural forests or intensively 
managed forest plantations have a simpler structure (Spies, 2004; 
McElhinny et al., 2006a). Thus, the abundance of old-growth attributes 
(e.g. large trees, snags, and accumulated woody debris), which con-
tributes to the structural complexity in the old-growth forest, can be 
used as a proxy for old-growth forest mapping (Mosseler et al., 2003c, 
2003a; Bauhus et al., 2009). A myriad of work has been conducted using 
a traditional field-based measurement of forest attributes to classify 
forest succession and assess the quality of old-growth forests (McElhinny 
et al., 2006a) (See also Table S01-Supplementary 1 for an overview of 
methods used to characterize old-growth forest). While field-based 
methods are essential for almost all forest studies, they are costly and 
normally cannot provide a fine grain assessment of forest state across a 
full landscape. 

The emergence of new technologies has allowed the development of 
precise measures of forest condition across broad areas (White et al., 
2016). For example, optical sensors have proven to be suitable for 
identifying forest succession at broad scales (Song and Woodcock, 
2002). Nevertheless, remotely sensed images are often constrained to 
two-dimensional interpretation, which can limit the ability to detect 
important three-dimensional structural characteristics of old-growth 
forests (Lefsky et al., 2002). On the other hand, Aerial Laser Scanning 
(ALS, or airborne LiDAR) has been proven to be an effective technique to 
estimate 3D forest attributes, particularly for height and biomass 
(Næsset and Økland, 2002; Hyde et al., 2006). ALS has been rapidly 
incorporated into forest management (Reutebuch et al., 2005; Wulder 
et al., 2008), wildlife habitat assessment (Hyde et al., 2006; Martinuzzi 
et al., 2009), evaluation the effect of pests (Bright et al., 2013), and other 
applications. In addition to height and biomass, a variety of other old- 
growth forest attributes can be accurately estimated with ALS (Bater 
et al., 2009; Bright et al., 2013; Wing et al., 2015; White et al., 2018). 
While ALS has the potential to be an effective way of generating an old- 
growth index to effectively map old-growth forests, models that allow 
old-growth to be identified using ALS data are needed. 

Being able to identify, quantify and map old-growth forests is a 
required precursor to effectively managing them within a landscape, and 
imperative for their conservation and maintenance in managed land-
scapes. Previous studies have developed a range of criteria for identi-
fying and mapping old-growth forests (Table S01-Supplementary 1). 
However, few have used old-growth attributes to create an index for old- 
growth value that evaluates forest structure at a fine ecological grain at a 
landscape scale extent. 

In this work, we aim to: (1) develop an old-growth index based on 
forest structures measured with traditional field methods; (2) evaluate a 
range of categorical and continuous old-growth indices that are derived 
from empirical forest attributes; (3) extrapolate the old-growth index to 
the landscape utilizing ALS-derived metrics; and (4) evaluate the 
amount and quality of old-growth forest for the study site, simulta-
neously evaluating the set-aside old-growth forests currently present in 
the landscape. 

2. Material and method 

2.1. Study area 

The Chinook Community Forest (CCF) is located within the Skeena 
region of British Columbia, Canada, and overlaps with six First Nations’ 
and Bands’ territories: Cheslatta Carrier Nation; Lake Babine Nation; 
Burns Lake Band; Wet‘suwet‘en First Nation; Skin Tyee Nation; and Nee 
Tahi Buhn Band. Community forests are area-based tenures managed by 
a local government, community group, or First Nation, generally for 
multiple objectives. The forests contain two forest types or bio-
geoclimatic (BEC), the Englemann Spruce – Subalpine Fir (ESSF) and 
Sub-Boreal Spruce (SBS) (Williams et al., 2001). CCF is 123,695.73 ha 
and currently encompasses 40 old-growth management areas (OGMAs) 
with a combined area of 8,618.69 ha, or 6.96% of the tenure. CCF is 
comprised of five management blocks (Fig. 1); for the remainder of the 
paper we depict only block 04 to facilitate visualization, but the analysis 
and numeric results are for the whole tenure. The overall commercial 
intent for the CCF is to produce and harvest wood fiber for sale. How-
ever, as the area is a community forest, other non-commercial ESs such 
as cultural heritage, recreation, and water quality are taken into account 
when planning forest management and operations. 

2.2. Field Data: 

Empirical measurement of forest composition and structural attri-
butes were collected from 120, 10 m radius, plots (Table 1; 5222 trees 
sampled). The location of the sample plots was determined using strat-
ified random sampling (stratifying across the 5 blocks, Fig. 1), such that 
plots were representative of the CCF land base. All trees >4 cm DBH 
were measured to ensure that forest structure in disturbed and young 
forests was captured (Keränen et al., 2015). In addition, trees with a 
diameter smaller than 4 cm were tallied to obtain the density of small 
trees and seedlings. The inventory followed the Change Monitoring In-
ventory (CMI) procedures used by B.C. Ministry (MFLNRORD, 2017). 
High precision GPS was used to obtain two measurements of ±2 m ac-
curacy from the plot center. 

2.3. Old-growth attributes 

From the list of thirteen old-growth attributes indicated by (Bauhus 
et al., 2009), we were able to produce eleven of them for the Chinook 
Community Forest (Table 1). In addition, we also included maximum 
tree height as it has a strong correlation with age in old-growth assess-
ment (Kneeshaw and Burton, 1998; Hao et al., 2007). Tree diversity was 
also included, as old-growth is expected to have higher tree diversity 
(Mosseler et al., 2003b; McElhinny et al., 2006b). Here we utilized these 
attributes as the basis for forest classification and the development of an 
old-growth index. Aboveground biomass estimates were based only on 
the value of DBH in the form of an exponential curve developed by 
Jenkins et al. (2003). DBH and height are the base for volume estimates 
calculated using volume equations developed by Penner et al. (1997) 
and Standish et al. (1985). A description of the equations and associated 
parameters utilized in this study are included in Supplementary 2. 

2.4. Plot-level definitions of old-growth 

We developed and evaluated eight empirical indices of old-growth 
forests using field measured forest attributes (Table 1 and Fig. 2). All 
empirical attributes used to develop the indices were normalized (i.e. 
scale from 0 to 1 by dividing each variable by its maximum value), such 
that all variable had the same weight in the index development. The first 
five of these indices were categorical and divided the forest into old- 
growth classes. The first index was based only on estimated stand age 
and divided the forest into four provincially defined forest age classes 
(MFLNRORD, 1995): initiation (0 – 40 year), young (40 – 70 year), 
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mature (70 – 140 year) and old-growth (>140 years). Four additional 
forest classification indices were developed including stand structural 
attributes (Fig. 2). For two of them, stand structural attributes (Table 1) 
were delimitated into classes using unsupervised k-means classification 
including age (index 2) and without age as a stand attribute (Index 3) 
(Fig. 2). For the indices 4 and 5, we utilized a stepwise procedure that 
used a random forest routine to reduce the dimensionality of the data 
prior to applying k-means classification (Shi and Horvath, 2006; Afa-
nador et al., 2016). The reduction in dimensionality works similar to a 
Principal Component Analysis (PCA), where all variables were reduced 
to a measurement of proximity to improve clustering of plots with 
similar stand structure. 

We also created thee different old-growth indexes to capture the 

continuous nature of the forest structures. To allow the combination of 
multiple measures to form single indices and give the same weight to all 
variables, we normalized all old-growth attributes (Table 1) to range 
from 0 to 1 by dividing each variable by its maximum value. For the 
indices’ development, each old-growth attribute was given the same 
weight. Age was utilized as a continuous variable to create the first 
continuous old-growth index (Fig. 2). The other two indexes were 
created utilizing all old-growth attributes, with and without age. 

2.5. ALS data processing 

ALS data was collected in a leaf-on condition with an average density 
of 14 pulses/m2, a half-scan angle of 12.5◦ from NADIR, with a 50% 
overlap. The footprint is estimated to be from 30 to 70 cm. LAStools 
(version 161114) was used to process the ALS point cloud data. Addi-
tional information on the methods and processing of the ALS data is 
provided in Supplementary 2 and a literature review on the use of ALS 
data for estimation of old-growth attribute in Table S2 - Supplementary 
1. From the ALS data, we calculate a range of forest structure metrics 
(Table 2) at a 20 m by 20 m raster resolution (i.e.400 m2 corresponding 
to the plot size from which empirical forest structure data was 
collected). Tree height is one of the most fundamental measurements in 
the forest industry and has a critical role in the quantitative assessment 
of forest biomass, carbon stocks, growth, and site productivity (Ander-
sen et al., 2006), and was incorporated into our metric using ALS height 
percentiles. In addition, tree height is dynamic throughout forest suc-
cession, and it is considered an important old-growth attribute (Spies, 
2004; McElhinny et al., 2006b). We incorporated tree and stand height 
into our metrics. The size, area and shape of forest gaps are also expected 
to reflect a forests development and succession stage (White et al., 
2018). We assessed gap structure by calculating canopy cover using 
vegetation point > 3 m high (STH4_Cov in Table 2). While this metric 
does not measure the canopy gap directly, canopy closure depicts the 
differences in canopy openness in different forest succession, especially 
when combined with other old-growth attributes, such as vertical 

Fig. 1. Location of Chinook community forest tenure areas and distribution of Old-growth management areas (OGMAs).  

Table 1 
Field measurement of Old-growth attributes.   

Old-growth Attribute Mean Range 

1 Large trees density (number of trees - dbh > 40 cm/ 
ha) 

14.47 0–222.82 

2 Presence of regeneration (number of trees < 1.3 m/ 
ha); 

4,564 0–37,179 

3 Biomass of late succession species (Spruce, Balsam 
fir, tons/ha) 

912.10 0–7,289.30 

4 Coefficient of variation of DBH (Horizontal 
Complexity) 

47.52 0–125.84 

5 Coefficient of variation of height (Vertical 
Complexity) 

37.08 0–110.79 

6 Density of dead standing trees (stems/ha) 180.38 0–1,655.21 
7 Volume of dead fallen trees (m3/ha) 13.08 0–115.16 
8 Wide decay class distribution (Std of decay class) 1.32 0–3.56 
9 Total Volume (m3/ha) 105.58 0–375.98 
10 Biomass (tons/ha) 3,297 0–14,322 
11 Basal area (m2/ha) 9.82 0–37.91 
12 Abundance of special attributes (broken top, fork, 

scars, and etc) 
3.19 0–14.49 

13 Age (year) 63.81 0–262  
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complexity. We used the coefficient of variation (CV) of ALS-derived 
tree heights to estimate the number and complexity of canopy strata 
(Zimble et al., 2003). Old-growth forests are expected to have higher 
complexity not only in the crown height but also in the understory. Thus, 
a metric for vertical complexity was calculated using multiple strata 
heights (0.2 – 1 m, 1 – 2 m, 2 – 3 m, and > 3 m). 

2.6. Statistical analysis: 

We used a Random Forest (RF) framework to develop classification 
and regression trees to model the empirically measured old growth at-
tributes using ALS derived predictor variables (Belgiu and Drăguţ, 2016; 
Cutler and Wiener, 2018). We implemented the random forest (RF) 
models using the “randomforest” package (Cutler and Wiener, 2018) in 
the R (R Development Core Team, 2018) programming environment to 
connect field delivered metrics to ALS metrics. 

Eight random forest models were generated, one for each of the old- 
growth indices described in Fig. 2. The models use the plot-level clas-
sification and old-growth indices delivered from fieldwork data as 
response variable. The predicting variables were the set of ALS metrics 
listed in Table 3. Each random forest model generated 10,000 decision 
trees to ensure the stabilization of the model. For each tree a subset of 12 

out of the 36 predicting variables was used as suggested by (Breiman and 
Cutler, 2003). For each tree, we tested subsets of predictors from 6 to 12 
out of the 36 predicting variables as suggested by Gareth et al. (2013) 
and Breiman and Cutler (2003). Most of the models had slightly better 
explained variation when 12 predicting variables were used in each tree 
in the random forest. Thus, we set 12 out of 36 predictors to growth each 
tree in all random forest models. In addition, we applied a K-fold cross 
validation (k = 4) procedure with the r package “Caret” to divide the 
data into training and validation data set (Kuhn, 2020). Thus, each 
random forest model was generated with a subsample of 75% of the 
available data and validated with the remaining 25%. This procedure 
was repeated ten (10) times for each model. Mean accuracy, kappa and 
balanced class accuracy was reported. For modeling the continuous old- 
growth indices (Model 6–8 in Table 2) random forest was implemented 
as a regression tree. For the regression, we reported the means and 
standard deviation of the r-squared and the mean square error of the ten 
repetitions. 

The R package “raster” (Hijmans, 2019) was used to generate old- 
growth maps from the different old-growth models developed in this 
work. The five Random forest models ran with the plot-level forest 
succession classification were compared in terms of out of bag error and 
the old-growth misclassification error (Belgiu and Drăguţ, 2016). The 

Fig. 2. Analysis schematic for the development of the old-growth empirical and ALS models. Field measured (plot-level) old-growth attributes (Table 1) were used to 
develop the response variables for the five classification and three regression models. Model 1 is an age-based classification of forest succession. For Model 2 through 
5, old-growth attributes, with or without age, were used to align plots with old growth forest classes. Model 6 uses “age” as a continuous response for old-growth. For 
Model 7 and 8, old-growth attributes, with and without age, were used to develop continuous old-growth indices. A detailed description of each model is available on 
Supplementary Material 4. 
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three Random forest models generated from the two old-growth indices 
and age estimates were compared in terms of mean squared error. The 
most robust models were used to generate old-growth maps for the 
whole study area. To make comparisons between the categorical and 
continuous models, we broke the continuous model into classes. We 
used the natural breaks (Jerks) option from the ArcGIS classification 
method to create five classes analogous to the other categorical defini-
tions of old-growth. 

3. Results 

3.1. Fieldwork data 

None of the field measured old-growth attributes displayed a normal 
distribution (Fig. 3), highlighting the importance of choosing a non- 
parametric statistical framework, such as “random forest”, for the 
development of old-growth models. Nine out of the ten non-age based 
variables selected to be included in the development of the old-growth 
indices were listed by Bauhus et al. (2009) as important old-growth 
attributes. 

3.2. Fixed old-growth definitions 

The classification models that utilized old-growth attributes without 
transformation (Model 2 and 3, Fig. 2), tended to underrepresent the 
high and very-high old-growth classes (Table 3). Including stand age as 
an attribute in the models did not substantially modify the old-growth 
classification (Models 2,3,4 and 5). The models that were based on 
reduced dimensionality prior to classification (Model 4 and 5) more 
closely approximated the age based old-growth classification groups. 
However, Model 4 and Model 5 had a higher number of plots classified 
as with very-high value for old-growth than any other classification, 
likely overestimating of old-growth in the landscape. 

K-means old-growth classification based on old-growth attributes 
separated plots with stand age higher than 140, even though the 
remaining classes completely overlapped (Fig. 4 a and b). On the other 
hand, stand age overlapped throughout old-growth classes based on 
reduced dimensionality old-growth classes (Fig. 4 c and d). Although the 
oldest stands were mostly classified into “High” and “Very-high” old- 
growth values in all classifications, there were some apparent mis-
classifications (Supplementary 3, Fig. S3). The plot where the oldest tree 
was sampled was classified as either “Low” (Supplementary 3, Fig. S3 b 
and c) or “High” (Supplementary 3, Fig. S3 d and e) old-growth value, 
where it is expected to be in the “Very-high” old-growth value. Similar to 
age, the other old-growth attributes were not well differentiated into 
clear and consistent classes by any of the classification routines (Sup-
plementary 3, Fig. S2 to Fig. S5). However, for the pure age classification 
(Model 1, Fig. 2), all old-growth attributes seem to follow a trend from 
very low abundance of old-growth attributes for the “Very-low” and 
“Low” classes to high abundance for the “High” and “Very-high” classes 
(Supplementary 3 – Fig. S1). Similar trends were also present for the 
other classifications (Model 2 to 5, Fig. 2), particularly for the old- 
growth attributes “maximum tree height”, “Biomass” and “Basal 
Areas”. The old-growth attributes differed with regard to how well they 
clearly differentiated into different classes. For example, “maximum 
tree-height” and “biomass” separated well the “very-high” class from the 
remaining classes in all models, except for pure age classification 
(Supplementary 3, Fig. S1). “Horizontal complexity” and “Volume” 
separated well the “Very-low” and “Low” old-growth value classes from 
the remaining classes. Yet, while one attribute separated well one class 
from the others, there were still overlapping between at least two classes 
in all classification for all attributes (Supplementary 3, Fig. S1 to S5). In 
addition, no single attribute provided a clear differentiation of all clas-
ses, likely because there is not a clear threshold to indicate when a forest 
enters the old-growth stage since stand development is continuous 
(Wirth et al., 2009b). 

Reducing the dimensionality of the old-growth attributes prior to 
classification substantially improved the models’ mean accuracy once 
compared to the K-means classification of old-growth attributes; from 
0.53 (+/− 0.03) to 0.69 (+/− 0.02) for Model 2 and 4, and 0.55 
(+/− 0.02) to 0.68 (+/− 0.02) for the models 3 and 5 (Table 4). The 
reduced dimensionality models (Model 4 and 5) had not only the best 
overall accuracy but also best class accuracy for “Intermediate,” “High,” 
and “Very-high” classes. While the model based on all attributes 
including age has greater predicting power for class “very-low” and 

Table 2 
ALS metrics utilized in the random forest models.  

Metric 
name 

Metric Description 

AHR_Avg Average of all height returns 
AHR_Kur Kurtoses of all height returns 
AHR_Max Max of all height returns 
AHR_Qva Average of squared height of all height returns 
AHR_Ske Skewness of all height returns 
AHR_Std Standard Deviation of all height returns 
AHR_Dns Number of all points above 1.3 m / number of all returns. 
H10PercT Height 10th Percentile 
H25PercT Height 25th Percentile 
H50PercT Height 50th Percentile 
H75PercT Height 75th Percentile 
H90PercT Height 90th Percentile 
H95PercT Height 95th Percentile 
STH1_Com Coefficient of variation of returns of height > 0.2 m and bellow < 1.0 

m 
STH1_Den Density of points for returns > 0.2 m and < 1.0 m / Density of ground 

returns 
STH1_Ske Skewness of all height returns 
STH1_Kur Kurtoses of all height returns 
STH1_Cov Canopy cover (First returns at height > 3.0 m/ all first returns*100) 
STH2_Com Coefficient of variation of returns of height > 1.0 m and bellow < 2.0 

m 
STH2_Den Density of points for returns > 1.0 m and < 2.0 m / Density of ground 

returns 
STH2_Ske Skewness of all height returns 
STH2_Kur Kurtoses of all height returns 
STH2_Cov Canopy cover (First returns at height > 3.0 m/ all first returns*100) 
STH3_Com Coefficient of variation of returns of height > 2.0 m and bellow < 3.0 

m 
STH3_Den Density of points for returns > 2.0 m and < 3.0 m / Density of ground 

returns 
STH3_Ske Skewness of all height returns 
STH3_Kur Kurtoses of all height returns 
STH3_Cov Canopy cover (First returns at height > 3.0 m/ all first returns*100) 
STH4_Com Coefficient of variation of returns of height > 3.0 m 
STH4_Den Density of points for returns > 3.0 m / Density of ground returns 
STH4_Ske Skewness of all height returns 
STH4_Kur Kurtoses of all height returns 
STH4_Cov Canopy cover (First returns at height > 3.0 m/ all first returns*100) 
UNDEN Density of points for returns > 0.2 m and < 3.0 m / Density of ground 

returns 
VERCOMP Coefficient of variation of all height returns  

Table 3 
Number of plots per each level of old-growth classification. Model 1 is a pure age 
classification. Model 2 and 4 are classification of the abundance of old-growth 
attributes, including age. Model 3 and 5 are also classification of the abun-
dance of old-growth attributes, except they do not include age.   

Model 1 Model 2 Model 3 Model 4 Model 5 

Very-low 7 35 35 13 14 
Low 29 26 26 15 17 
Intermediate 29 23 23 19 18 
High 22 6 6 22 25 
Very-high 11 8 8 29 24  
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“Intermediate” (Model 4) the model that excluded age performed better 
in class “Low,” “High,” and “Very-high.” In particular, the reduced 
dimensionality models were better at identifying forests with “High” and 
“Very-high” old-growth value than any categorical definition utilized 
here (Table 4, Model 4 and 5). However, the stepwise framework of 
these models involved the use of two classification methods (“random 
forest” and K-means) to reach the final classification. Using random 
forest to reduce dimensionality of the data added randomness to the plot 
classification, which was stabilized after multiple k-means classification 
on the data results of the unsupervised random forest. Thus, while the 
final classifications based on reduced dimensionality old-growth attri-
butes have better performance than the others, the accuracy of the 

classification only increased from 0.53 in pure age definition to 0.69 
when old-growth attributes were included. 

3.3. Continuous old-growth definition 

When comparing the continuous old-growth indices (Table 5), we 
focused on the overall abundance of old-growth attributes. The old- 
growth attributes that had the highest correlation with pure age 
model (Age-Model 6) were the “Maximum Tree height and “Biomass” (r- 
squared > 40%) (Supplementary 3, Table S1). No attributes had r- 
squared >45% with AGE. 

The continuous age-based model (Model 6, Fig. 2) represents age and 

Fig. 3. Histograms of old-growth attributes best correlated with age, displaying the distribution of the data density of a) age, b) volume of live trees (m3), c) above 
ground live biomass (tons/ha), d) basal area of live trees, e) maximum tree height (m), f) biomass of late successional species (tons/ha of Spruce and Balsam fir), g) 
number of species features (ex. scars, fork and broken tops), h) density of dead standing tree per hectare, i) coefficient of variation of dbh as a proxy for horizontal 
complexity, j) coefficient of variation of height as a proxy for vertical complexity, and k) volume of dead fallen trees/ha as a proxy for coarse woody debris. 
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a few other old-growth attributes quite well, but fail to represent other 
important features, such as the vertical and horizontal complexity, 
coarse woody material, dead standing trees, volume and etc. (Supple-
mentary 3, Fig. S6). The continuous old-growth attributed models 
(Model 7 and 8), had lower correlations with age, r-squared 56% and 
45% respectively (Fig. 4 e and f), but better represented all other old- 
growth attributes (Supplementary 3 – Fig. S9 and S10). For example, 
“Late succession species” and “Dead Standing Trees” had their r-squared 
increased from < 10% in Model 6 (age definition) to over 32% for Model 

7 and 8. Even the “Maximum tree height” and “Biomass”, best- 
represented old-growth attributes in Model 6 (Supplementary 3, 
Fig. S6 b and c) were significantly increased in Model 7 and Model 8 
(Supplementary 3, Fig. S7 and S8). 

The regression model generated with age only (AGE) did not perform 
as well as the old-growth index models (OGA + AGE and OGA) 
(Table 5). In addition, there was no difference between the perfor-
mances of the old-growth index models when age not included. Corre-
lations between OGA definitions and old-growth attributes were low 

Fig. 4. Age distribution according to each different old-growth definition developed in this study: a) old-growth classification based on the k-means classification of 
old-growth attributes including age and b) without age, old-growth classification based on the k-means classfication of old-growth attributes pre-processed with 
unsupervised random forest c) including age and d) without age, and countinous old-growth definition based on old-growth attribute e) including age and f) without 
age. From a) to d), figures displays the median and ± interquartile intervals, while figures e) and f) the linear regression between Model 7 and 8 (x-axis), respectively, 
against age (y-axis). The names on top of each graph represent the definition and are listed and depicted in Fig. 2. See Supplementary 3 – Fig. S1 for Model 1 and 
Supplementary 3 – Fig. S6 for Model 6. 
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(Supplementary 3 – Fig. S7 and S8). 
From all eight models developed, we selected three to project old- 

growth values across the whole study site. First was age classification, 
because it is the method currently used for defining and location old- 
growth forests (MFLNRORD, 1995). Second, reduced dimensionality 
attribute-based classification (Model 5) because this was the model with 
the highest accuracy among the categorical models for the “high” and 
“very-high” old-growth values. The third and last model was continuous 
measure attribute-based definition (Model 8), because the model has a 
higher performance than pure age model (Model 6), and it did not 
include age, which is a costly attribute to be measured. 

3.4. Comparison between old-growth maps 

The attribute-based classification (Model 5) and old-growth index 
(Model 8) diverged from pure age classification (Model 1) in a similar 
way, both underestimated old-growth value classes (Table 6). Model 5 
and 1 showed the greatest divergence for the “Intermediate”, “High”, 
and “Very-high” old-growth value classes. Model 1 one overestimated 
“Very-low” and “Very-high” old-growth classes while failing on classi-
fying “High” old-growth value areas. Model 5 underrepresented the 
areas with the “Very-low” and “Low” old-growth values and over-
represented “Very-high” old-growth class. While both Model 1 and 5 
classified a similar percentage of the landscape as “Very-high” old- 

growth value, 36.9% and 35.1%, they disagree in 17.6% of the “Very- 
high” old-growth classification and 52.6% of the total landscape clas-
sification (Table 6). Compared to the Model 1 the Model 5 map under-
estimated old-growth value by at least 1 class in 48.7% of the landscape. 
This percentage is much lower when comparing pure age classification 
with the old-growth index map (28.1%), Model 1 and 8 respectively. The 
high percentage of underestimation suggests that pure age classification 
map overestimated the old-growth value, especially for the “Interme-
diate” and “Very-high” class. 

Model 1 map has a higher percentage of the areas classified as “Very- 
high” old-growth value than old-growth index (Model 8), 36.9% and 
11.8%. However, those areas were more scattered and do not exhibit the 
same degree of spatial clustering observed in Model 5 and Model 8 
(Fig. 5 b and c). When we compared the Model 5 and 8 maps, Model 5 
overrepresented “Intermediate” and “High” old-growth value classes, 
while Model 8 overestimated the “Very-low” old-growth value. Both 
models have similar total percent “Very-low” class, 4.5% and 4.0% for 
Model 5 and 8 respectively. However, the biggest disagreement between 
Model 5 and 8 is in the “Very-low” old-growth class, where Model 8 
overestimated 33.4% of the areas classified as “Very-low” old-growth 
value by Model 5. Out of 50.6% of the areas that Model 8 and 5 
showed classification disagreement, 35.1% were in the “Very-low” and 
“Low” old-growth class. For the “High” and “Very-high” old-growth 
classes, the disagreement between Model 8 and 5 was <2.5%. This 
means that, Model 8 and 5 mostly concurred in terms of “High” and 
“Very-high” old-growth classes, areas mostly likely to allocate old- 
growth forests. 

Our results suggest that the pure age Model 1 is not capturing the 
distribution of old-growth attributes, and that Model 5 is overly repre-
senting “high” and “very-high” old-growth classes. Model 8 not only 
captured the continuous nature of the old-growth value, but also had a 
high correlation with each individual old-growth attribute (Supple-
mentary 3, Fig. S7), high R2 (Table 5), and has the most conservative 
definition of “Very-high” old-growth values (11.8%) when compared to 
the old-growth classification of Model 1 and 5, 36.9% and 35.1%. 
Finally, we also compared the difference between model Model 7 and 8 
to make sure the exclusion of “age” as one of the old-growth attributes 
did not alter the patterns of distribution of old-growth values. We found 
that no pixel had a difference higher than +/− 0.66 (13%), which is less 
than one class difference. This suggests that the exclusion of the age did 
not affect old-growth mapping. 

3.5. Landscape level projection 

We performed a post classification independent accuracy assessment 
in 14 sites (Supplementary 3, Fig. S9). Four plots were classified as 
“Very-high” old-growth value by Model 8 and one plot as “Intermedi-
ate,” which concurred with what we observed during the field survey. 
The old-growth index (Model 8) captured the accumulation of old- 
growth attributes. However, wetlands received low old-growth values 
in both models since they do not attain the characteristics we were 
tracking as important old-growth attributes (ex. tree height, canopy 
complexity and basal area). 

Using our old-growth index (Model 8), we estimated that 14.7% of 

Table 4 
Summary of statistics for the five old-growth classification random forest models. All statistics represent the predictive power of models calibrated with ALS metrics as 
predictors and five classifications of old-growth as the response variable. Model 1 was contructed purely with age, as a discreet metric of old-growth, while Model 2 
represent classes of abundance of all old-growth attributes, including age. Model 3 is similar to Model 2, except that it does not include age. Model 4 and 5 are also 
classification the abundance of old-growth attributes, but it has a unsupervised random forest classification as a further step to improve clustering.  

Classification Accuracy Mean (+/− SD) Kappa Mean (+/− SD) Very-Low Low Intermediate High Very-High 

Model 1 0.54 (+/− 0.03) 0.39 (+/− 0.04)  0.95  0.86  0.61  0.53  0.63 
Model 2 0.53 (+/− 0.03) 0.34 (+/− 0.05)  0.86  0.58  0.62  0.50  0.52 
Model 3 0.55 (+/− 0.02) 0.37 (+/− 0.03)  0.86  0.61  0.64  0.51  0.53 
Model 4 0.69 (+/− 0.02) 0.60 (+/− 0.03)  0.92  0.71  0.83  0.73  0.84 
Model 5 0.68 (+/− 0.02) 0.59 (+/− 0.03)  0.89  0.75  0.74  0.75  0.86  

Table 5 
Statistical summaries of old-growth index models. All statistics represent the 
predictive power of models calibrated with ALS metrics are predictors and 
continous old-growth indices as the response variable. Model 6 is contructed 
purely with age, as a continuos metric of old-growth, while Model 7 takes into 
the present and abundance of all old-growth attributes, including age. Model 8 is 
similar to Model 7, except that it does not include age.  

Regression Adj. R-squared (+/− SD) Residual standard error (+/− SD) 

Model 6 0.35 (+/− 0.04) 31.19 (+/− 1.84) 
Model 7 0.71 (+/− 0.01) 0.68 (+/− 0.02) 
Model 8 0.71 (+/− 0.01) 0.55 (+/− 0.01)  

Table 6 
Comparison between models to assess and locate the differences between clas-
ses. The column “<-1” shows underestimations (%) and “>1” the over-
estimations (%) made by the different models once compared to one another. 
Model 1 represents a typical age classification; Model 5 is a classification based 
on abundance of old-growth attributes, and Model 8 is continous meansure of 
the accumulation of old-growth attributes.   

Model 5 – Model 1 Model 8 – Model 1 Model 8 – Model 5 
Class Class Error (%) Class Error (%) Class Error (%) 

< − 1 > 1 < − 1 > 1 < − 1 > 1 

Very-low  0.1  3.8  3.4  0.2  0.0  33.4 
Low  11.3  0.0  5.0  0.1  0.0  1.7 
Intermediate  19.8  0.0  15.0  0.2  12.9  0.0 
High  0.0  0.0  0.0  0.0  2.0  0.0 
Very-high  17.5  0.1  4.7  6.1  0.5  0.0 
Total  48.7  3.9  28.1  6.6  15.5  35.1  
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the tenure area has “Very-high” old-growth value (Fig. 6). When com-
bined with “High” old-growth class this increases to 41.6%. However, 
from the 14.7% of the estimated “Very-high” old-growth forests in the 
landscape, only 13.5% is “protected” inside OGMAs. Additionally, only 
2.55% of the OGMAs have an estimated “Very-high” old-growth value 
cover >50%, and more half of OGMAs had <25%. These results suggest 

a high fragmentation of “Very-high” old-growth value forest within 
OGMAs. It is worth noting that the predictive old-growth map inherited 
the error from the model (Model 8). In addition, the classes used to 
identify areas with “very-high” old-growth value are arbitrary and 
applied as a proof of concept. Thus, although the results above displayed 
the rarity and fragmentation of forest with “very-high” old-growth 

Fig. 5. Spatial correlations and constraints between a) pure age classication (Model 1), b) reduced dimensionality old-growth attribute based classification (Model 
5), and c) a continuous definition of old-growth index based on old-growth attributes (Model 8), where d) represents the differences between Model 5 and 1, e) Model 
8 and 1, and f) Model 8 and 5 with red representing underestimation and blue overestimations of old-growth value. 
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values in the landscape, there is still the need for further work regarding 
the uncertainties and improvement of the model. 

4. Discussion 

4.1. Characterizing old-growth index 

Our results indicate that a structure-based old-growth definition can 
better capture the continuous nature of forest development, and more 
effectively reflect the ecological functions that old-grow forests epito-
mize, compared with old-growth categories that focus only on age. The 
incorporation of tree age into our old-growth models did not substan-
tially improve the models’ overall performance. Moreover, although age 
has been a useful indicator of old-growth under some conditions, it is 
less valuable when the dominant species in old-growth forests are multi- 
aged (Gillis et al., 2003). 

Forest dynamics in the northern interior of British Columbia, Can-
ada, have historically been defined by a regime of frequent large-scale 
disturbances (DellaSala et al., 1996; Spies et al., 2006). In these for-
ests, estimating age can be difficult given the patchy nature of the dis-
turbances, and the fact that legacy features such as surviving trees and 
woody debris often remain on the landscape. The inclusions or exclusion 
of these legacies features during inventories could lead to the over-
estimation or underestimate of stand age and drive false conclusion 
about the forest succession and old-growth functional value. Therefore, 
for forests that experience more frequent natural disturbances, or dis-
turbances that vary in intensity and propagate heterogeneous land-
scapes, a structure-based old-growth definition, such as the one we 
developed, will likely be more appropriate than an age-based definitions 
(Kneeshaw and Gauthier, 2003; Wirth et al., 2009b). 

The model based on our old-growth forest index not only had better 
overall statistical performances than the age-based models but also 
better captured actual field measurements of old-growth attributes. 
Consequently, the old-growth index has a better chance to capture the 
ecological function of old-growth forests in the landscape, as opposed to 
a forest with few old-trees. This is important because evidence suggests 
that many species typically found in old-growth are linked to specific 
structural attributes, and associated environmental conditions and not 
to old-growth as such (Mosseler et al., 2003c; McElhinny et al., 2006b; 
Lonsdale et al., 2008). Thus, the strict separation of forested landscapes 
in old-growth and non-old-growth may not represent a suitable con-
servation strategy for the provision of habitats in the landscape (Bauhus 
et al., 2009). 

Stand development is continuous, and hence there is not a clear 
threshold to indicate when a forest enters the old-growth stage (Spies 
and Franklin, 1991; Wirth et al., 2009b). Therefore, a classification of 

forest succession, either age- or structure-based, will always be some-
what arbitrary (Hilbert and Wiensczyk, 2007; Wirth et al., 2009b; 
McMullin and Wiersma, 2019). The use of the old-growth index instead 
of binary classes is essential in dealing with the continuous nature of 
forest structural development and capturing functional old-growth 
forests. 

4.2. Management Implications 

Despite advances in the definition of old-growth attributes and old- 
growth forests there are still challenges with evaluating old-growth at 
the landscape scale. For example, due to the diversity of old-growth 
forests, a consensus on a single ecological definition of old-growth will 
never be reached and may not be desirable given the diversity of forest 
conditions (Spies, 2004; Wirth et al., 2009b). The framework we 
developed here can be used to devise local definitions based on 
measurable structural features and biophysical site conditions, as has 
been advocated by past studies (Braumandl and Holt, 2000; Mosseler 
et al., 2003c; McElhinny et al., 2006a; Hilbert and Wiensczyk, 2007; 
Wirth et al., 2009b). 

The degree to which old-growth forests and old-growth structures 
should be maintained or restored at the landscape level remains a 
complex political question (MFLNRORD, 1995; Environmental Law 
Centre, 2013). The methods current used to select set-aside old-growth 
forests might be increasing the risk of old-growth loss as they are mostly 
based on stand-age (MFLNRORD, 1995; Gillis et al., 2003; Environ-
mental Law Centre, 2013). Our old-growth index allows for a more 
holistic view of the landscape’s old-growth values, which indicate the 
level of abundance or rarity of old-growth in a specific location. As such 
it can be used for developing benchmarks for local or regional targets for 
conservation and management activities, as well as being used to design 
new old-growth reserves, assess current reserves, and monitor old- 
growth values. 

Old-growth forest reserves may be prone to natural disturbances, 
especially in boreal and sub-boreal regions (Spies et al., 2006). Pro-
tecting old-growth forests should therefore be only part of the strategy to 
maintain old-growth value in the landscape (Burton et al., 1999). Areas 
outside reserves facilitate gene flow and migration of populations as well 
as provide complementary habitat (Lindenmayer and McCarthy, 2002). 
Using a continuous old-growth index can aid in the planning of long- 
term strategies as it can accommodate a dynamic population of old- 
growth stands in multiple stages of development within landscapes 
subjected to wildfire, pathogens, and climate change (Spies, 2004). For 
example, our old-growth index can track old-growth values throughout 
the whole landscape, thereby allowing set-aside forests to be com-
plemented with managed forests that also retain key attributes of 

Fig. 6. Summary of old-growth assessment in the study area, utilizing the old-growth model 8, where a) displays the percentage cover of each old-growth value class 
for the whole landscape and only for the areas within OGMAs, and b) depicts the number of OGMAs per percentage forest cover of “Very-high” old-growth value. 
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primary and old-growth forests. Such a strategy has been previously 
proposed by Beese et al. (2003), who suggested that set-aside old-growth 
should be combined with uneven-aged stand management to maintain 
late-successional forest attributes. This strategy is particularly important 
in areas where reserves are too small to ensure the occurrence of natural 
disturbances within their boundaries or to accommodate all develop-
mental stages of forest succession (Kneeshaw and Gauthier, 2003). 

4.3. Caveats 

A continuous old-growth index derived from ALS and calculated at a 
landscape extent does require additional work regarding the identifi-
cation of suitable thresholds and targets. In many applications, the local 
management objectives and constraints can be used to inform what 
these old-growth thresholds and targets should be. For example, the 
Chinook Community Forest is managed for timber in a region that his-
torically has a high frequency of large-scale disturbances. In these con-
ditions, it is expected that stands with high old-growth value will be rare 
(DellaSala et al., 1996; Spies et al., 2006). Thus, a threshold for old- 
growth can be set such that set-aside old-growth forests include forest 
with intermediate old-growth value. 

The use of a continuous old-growth index for old-growth mapping 
should not be done without a critical evaluation of how the index 
characterizes other ecotypes and unique forest types. For example, in 
our case study region the index classifies wetlands as areas of low old- 
growth value, even though they can play a significant role in the pro-
vision of ESs and biodiversity (Adhikari et al., 2009; Kayranli et al., 
2010). A similar challenge with the old-growth index is that it does not 
include any estimates of human or natural disturbance. Similar to nat-
ural disturbances, human disturbances often reduce the structural 
variability that is typical of many naturally developed older forests 
(Spies, 2004), and this may not be captured. Nevertheless, the source of 
the disturbance (e.g., human or fire) are irrelevant when stands are 
defined primarily based on structural development (Spies, 2004). 

5. Conclusion 

In this work, we developed an old-growth index based on forest 
structures measured with traditional field methods. While the index is 
specific to the study site, the methodology is adaptable to other forest 
types and ecosystems. We utilized the old-growth index to map old- 
growth value on the landscape and evaluate the amount and quality of 
the old-growth forest for the study site. Our assessment showed that 
<14% of the forests in the landscape have very high old-growth value, 
and <25% of forest protected in OGMAs have old-growth status. The 
old-growth index allows for the holistic assessment and monitoring of 
old-growth value in the landscape, which can aid managers to not only 
track the amount and quality of old-growth in the landscape but also set 
targets for old-growth retention in a transparent manner. Most impor-
tantly, mapping old-growth value can aid in the conservation of this rare 
resource and its services in managed landscapes. 
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